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ABSTRACT: Chemical vapor deposition (CVD)-grown flakes of high-quality
monolayers of WS2 can be stabilized at elevated temperatures by encapsulation
with several layer hexagonal boron nitride (h-BN), but to different degrees in the
presence of ambient air, flowing N2, and flowing forming gas (95% N2, 5% H2).
The best passivation of WS2 at elevated temperature occurs for h-BN-covered
samples with flowing N2 (after heating to 873 K), as judged by optical
microscopy and photoluminescence (PL) intensity after a heating/cooling cycle.
Stability is worse for uncovered samples, but best with flowing forming gas. PL
from trions, in addition to that from excitons, is seen for covered WS2 only for
forming gas, during cooling below ∼323 K; the trion has an estimated binding
energy of ∼28 meV. It might occur because of doping level changes caused by
charge defect generation by H2 molecules diffusing between the h-BN and the
SiO2/Si substrate. The decomposition of uncovered WS2 flakes in air suggests a
dissociation and chemisorption energy barrier of O2 on the WS2 surface of ∼1.6
eV. Fitting the high-temperature PL intensities in air gives a binding energy of a free exciton of ∼229 meV.

KEYWORDS: WS2, monolayer, transition-metal dichalcogenide (TMD) monolayers, photoluminescence, h-BN encapsulation,
elevated temperature, excitons, trions

■ INTRODUCTION

Layered transition-metal dichalcogenides (TMDs) have
attracted much attention because of their electronic and
optical properties.1 One of the distinctive properties of several
TMDs is the appearance of a direct band gap transition in the
monolayer, rather than the indirect gap in the bulk material,
and this can provide strong luminescence in the visible.2,3 This
can lead to several important applications in optoelectronic
devices,4,5 including photodetectors,6,7 and light-emitting
diodes (LEDs).8

One of the major obstacles in using TMDs to realize these
applications at elevated temperature is their stability. Bulk
TMDs are known to be relatively unstable at higher
temperatures, in oxygen-containing media, in the presence of
inert gases, and under vacuum.9,10 Some recent work shows the
limited stability of few-layer TMDs at elevated temper-
atures,11−15 but less is known about the stability of monolayer
TMDs under various environmental conditions at high
temperature. It is known that potential microscopic structural
transitions, defect formation, and substrate absorption resulting
in trap states and undesirable doping can occur at higher
temperatures, as well as decomposition.11−14 The existence of

imperfections can significantly degrade luminescence quantum
yields and the on/off ratios of field-effect transistors (FETs).16

Therefore, understanding TMD stability and developing
effective passivation methods of TMDs are essential for high-
performance applications at elevated temperatures.
h-BN (hexagonal boron nitride) is known to be thermally

stable up to ∼1800 K.17 h-BN encapsulation is now widely
used for the passivation of graphene and 2D semiconductors,
such as for improving luminescence efficiency and achieving
high electronic quality.18,19 In this study, we learn that WS2
monolayers can be stabilized at high temperatures by using h-
BN encapsulation. We investigated the stability and resulting
quality of h-BN encapsulated and uncovered regions of WS2
monolayers, grown by chemical vapor deposition (CVD), by
using in situ optical photoluminescence (PL) and other optical
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measurements at different stages of the heating/cooling cycles
and in the presence of different gas environments.

■ EXPERIMENTAL SECTION
The monolayer WS2 was grown on a 285 nm SiO2/Si substrate by
CVD,20 and then characterized by optical microscopy, which showed
resulting equilateral triangle flakes. The length of the side of the flake
was ∼5−30 μm. h-BN flakes of near quadrilateral shape with a longest

side length of 50−100 μm, and much larger than the corresponding
WS2 flake dimensions, were then exfoliated onto a SiO2/Si substrate,
and their thickness and uniformity were determined by atomic force
microscopy (AFM). Standard transfer methods were used to transfer
h-BN flakes to the top of the WS2/SiO2/Si, by first picking up the h-
BN layers with a PPC/PDMS slide (poly(propylene) carbonate
(PPC), polydimethylsiloxane (PDMS))21 and then transferring them
on top of the monolayer WS2. Then the chips were put in acetone

Figure 1. (a) Schematic depiction of a sample placed in a Linkam cell where the temperature and environment are controlled and materials
processing is monitored in real time. (b) Crystal structure of CVD-grown monolayer WS2 on a SiO2/Si substrate. (c) Crystal structure of a van der
Waals stacked sample that is composed of monolayer WS2 encapsulated with h-BN on a SiO2/Si substrate. (d) Optical image showing monolayer
CVD-grown WS2 on a SiO2/Si substrate, with a few of the flakes encapsulated by h-BN (and are not seen). Monolayer WS2 is characterized in air
by (e) PL measurement and (f) Raman scattering (with the 520 cm−1 peak due to Si), at 300 K.

Figure 2. (a) In situ PL spectra of CVD-grown WS2 flakes (a) covered, during heating, and (b) uncovered by h-BN, during the heating/cooling
cycle in ambient air, at different temperatures in real time. (c) Positions, (d) fwhms, and (e) peak intensities of the PL peak of the h-BN-covered
WS2 flakes and uncovered flakes versus temperature (with symbols defined in (e)).
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overnight and the remaining PPC residue was cleaned with isopropyl
alcohol.
Optical analysis of the WS2 occurred with in situ control of the

temperature and environment in a Linkam cell (LINKAM THMS
600) (Figure S1 in the Supporting Information). A schematic view of
the in situ optical measurements with control of the temperature and
gas environment is given in Figure 1a. Two regions on the chip were
probed in the optical measurements: the CVD-grown monolayer WS2
with h-BN encapsulation, called the covered regions, and the bare
monolayer WS2 on the substrate, called the uncovered regions.
Schematic views of the crystal structure in the regions are shown in
Figure 1b,c. The optical image of the entire sample is shown in Figure
1d.
In situ PL measurements using a continuous-wave argon ion laser

(514.5 nm) were performed over a range of temperatures in real time
first in ambient air. The temperature was increased from room
temperature to 773 K (and no higher because the uncovered sample
decomposed at this temperature), with a heating rate of 50 K/min to
a given target temperature, at which PL was measured after waiting 10
min to ensure thermal equilibrium, before further heating continued;
the same procedure was followed during cooling. Signals were
captured by a cryogenically cooled silicon CCD detector (Princeton
Instruments Spec-10:400B). For confirmation that the WS2 flakes did
not macroscopically degrade and were well preserved after sample
fabrication, the monolayer WS2 flakes were characterized by room-
temperature Raman scattering and PL before the start of each run, as
seen in Figure 1e,f for ambient air, in Figure S2 for flowing N2, and in
Figure S3 for flowing forming gas in the Supporting Information.
Figure 2a,b shows the temperature-dependent PL spectra of WS2

respectively in a covered and an uncovered region. The sample was
heated in ambient air from room temperature to 773 K and then
cooled down to room temperature, monitored by in situ PL at each
targeted temperature. The PL evolved in covered and uncovered
regions similarly from room temperature to 673 K. Above 673 K, the
uncovered regions of the sample started to decompose and totally
disappeared when the temperature approached 773 K, as seen by
optical microscopy (Figure 3a,b). (This is why 673 K is the highest
temperature with measurable PL in the uncovered regions.) In

contrast, in covered regions WS2 was still observable and still showed
strong PL emission. However, the PL signals of the covered sample
did not return to their initial values after cooling to room temperature
(Figure 2e); the integrated PL intensities were ∼63% lower than
those at the beginning. This could be associated with the spot features
that formed at the center of the covered WS2 triangles, as observed by
optical microscopy in Figure 3c,d, that indicates some degradation.

In the h-BN-covered region, the PL peak position of monolayer
WS2 follows similar trends in the heating and in the cooling cycles,
but they are not identical (Figure 2c). The peak is located at 1.954 eV
at room temperature at the beginning of the run and at 1.942 eV after
it. This small red shift of 12 meV could be caused by an increase in
the biaxial in-plane tensile strain by ∼0.12% (see below).22−25 As seen
in Figure 2d, the fwhm peak width was 51.3 meV before the heating
cycle and 59.1 meV after cooling to room temperature. This
broadening, along with the PL intensity decrease, might mean the
exciton lifetime has decreased. Peak width broadening might result
from impurity or defect formation leading to faster nonradiative
recombination or from increased local inhomogeneity during heating.

The optical images of the sample in ambient air before and after the
heating/cooling to 773 K are compared in Figure 3. Figure 3a,c shows
the bright and dark field optical images at room temperature before
the cycle. The triangles are monolayer WS2 grown by CVD and the
big blue quadrilateral-shaped flake is the several-layer h-BN on top of
the WS2. The micrograph of the same sample region after the
heating/cooling cycle in Figure 3b shows three things. First, all
monolayer WS2 in the uncovered region has totally decomposed,
which is consistent with the in situ PL measurements presented in
Figure 2b. Second, the shape and area of the monolayer WS2 flakes in
the covered region remain unchanged, indicating that the WS2 flakes
did not apparently decompose at 773 K because of the protection by
h-BN encapsulation. Third, when the dark-field optical images in parts
(c) and (d) of Figure 3 are compared, a blueish spot appears at the
center of each triangular, a WS2 flake in the covered region after the
heating/cooling cycle in air; the two flakes where this spot is seen
clearest are encircled. As noted, these spots might be one of the
reasons why the PL intensity decreases in Figure 2e. These spots also
appear in the bright-field image in Figure 3b.

Figure 3. (a) Optical image of triangular monolayer CVD-grown WS2 flakes on a SiO2/Si substrate, with several of the flakes covered by h-BN
(light blue). These covered flakes are barely visible here, and the two of them that are clearly seen to have bluish spots in (b) and (d) are encircled
in each image. (b) Optical image of the same sample after heating to 773 K in ambient air and cooling to room temperature. (c) and (d) are dark-
field microscope images showing the same samples as in (a) and (b), and the outline of the h-BN is also seen in both. After heating, the uncovered
WS2 flakes are seen to have decomposed, whereas the covered ones remain. The optical image exposure in (d) is longer than that in (c) to enable
seeing the bluish centers in the center of covered WS2. All images are at room temperature.
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Covering monolayer WS2 with h-BN provides some passivation of
monolayer WS2 in air to ∼773 K, but it is not perfect, as seen by the
decrease of the PL intensity. Therefore, such PL measurements were
repeated during heating/cooling cycles, during which 20 sccm N2 (at
1 atm) flowed in the chamber (Figure 4b) and then repeated again
with forming gas (95% N2, 5% H2) (Figure 4c), but now with heating
to 873 K; for reference, the PL data for ambient air are shown in
Figure 4a. For flowing N2, the PL from covered and uncovered
regions were similar from room temperature until 673 K. The
uncovered sample began to disappear when the temperature was
above 673 K and disappeared totally at 773 K. Covered WS2 still
showed strong PL emission to 873 K. After this entire heating/cooling
cycle, the integrated PL intensities of the covered region were ∼47%
lower than those at the beginning and there was a PL blue shift of
∼11 meV.
Then the measurement was repeated with flowing forming gas and

heating to 873 K. The temperature-dependent PL intensity is shown
in Figure 4c. Interestingly, the uncovered WS2 then started to
decompose at 773 K, and totally disappeared when the temperature
approached 873 K. The uncovered WS2 survives to a higher
temperature in a forming gas environment than in air or N2, perhaps
because WS2 decomposition is related to the oxygen and water vapor
in the surrounding area, and forming gas helps reduce oxidation. With
WS2 covered by h-BN, the sample and the observed PL remain to the
high temperature of 873 K. Trion peaks appear only for these covered
samples and only with flowing forming gas, during cooling starting at

323 K, and they are strong at room temperature. This suggests
unintentional charges are induced at high temperature and the doping
level of the covered WS2 changes. Finally, after the entire heating/
cooling cycle, the integrated PL signals of the covered region are
∼96% lower than those at the beginning of the cycle. (Including only
excitonic (and not trion) emission, the decrease in the integrated PL
signal is 98%.) This suggests that covered WS2 becomes more
damaged than that with heating in air (to 773 K) or flowing N2 (to
873 K). Therefore, h-BN encapsulation passivates the covered WS2
the least with forming gas present. The PL peak was blue-shifted by
67 meV, which also suggests damage (see below). The Raman spectra
in Figure S4 show no evidence of sulfur-terminated surfaces after
heating in forming gas, with the formation of thiols, which could be
one route toward passivation; this route also appears to be unlikely
because there is no excess sulfur for this to occur.26,27 They also show
no evidence of the partial reduction of the SiO2 (due to the H2 in
forming gas), which could lead to the charges needed for trion
formationbut these levels may be too small to be seen by Raman
scattering.

Therefore, the best passivation occurred for covered samples with
flowing N2, and the best for uncovered samples was with flowing
forming gas.

Because heating caused the least damage in covered WS2 with
flowing N2, bright-field micrographs of the sample before and after
heating were retaken for flowing N2 up to 873 K, as with that for air in
Figure 3a,b with heating to 773 K, as shown in Figure S5 in the

Figure 4. (a) PL exciton peak intensity of h-BN-covered WS2 flakes and uncovered flakes versus temperature for (a) ambient air, (b) flowing N2 at
1 atm, and (c) forming gas flowing (95% N2, 5% H2) at 1 atm. In (c) the PL trion peak intensity is also plotted, for the trion peak that is seen near
the end of the cooling phase of the heating/cooling cycle, as resolved in (d) (where the trion peak is blue and exciton peak is red). In forming gas,
uncovered WS2 survives above 673 K and still shows strong PL and starts to decompose above 773 K.
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Supporting Information. Unlike for air, no spots in the center of the
WS2 were seen after heating, which also indicates less damage.

■ RESULTS AND DISCUSSION
Gao et al. used XPS analysis to show that sulfur oxide does not
form when WS2 is in air, and therefore WS2 oxidation starts
with the breaking of the W−S bond, which is then followed by
oxygen atoms displacing sulfur atoms at the surface.28 The
oxidized region has been identified as WO3.

29 Oxygen and
water molecules present would induce degradation.30

Often the degradation and decomposition of TMDs can be
attributed to exposure to oxygen. Oxygen dissociates into
individual atoms and adsorbs on the surface of the TMD
flakes. This degradation is limited at room temperature by the
energy barrier for O2 dissociation and chemisorption; there-
fore, TMDs are stable in an ambient environment.31 In Figure
2 we see that the decomposition of uncovered WS2 occurred at
∼673 K and higher in air. Using this, the energy barrier for O2
combined dissociation and chemisorption (Ea) can be roughly
estimated by setting 10 e E k T12 /a B− − ∼ 1 at 673 K,32 using the
pre-exponential factor in the transition-state theory by Nan et
al.32 for the physical and chemical adsorption of oxygen
molecules on MoS2. This gives ∼1.6 eV, which is the same as
that calculated by DFT.31

Because WS2 is largely unchanged at 673 K in air when it is
covered by h-BN, it is largely stabilized by h-BN encapsulation
at high temperature (though the postcycle PL is still affected).
The effectiveness of the h-BN encapsulation is not related to h-
BN thickness (15−40 nm here) because the energy barrier for
an O2 molecule across a monolayer van der Waals layer by
quantum tunneling is very high, 5 eV.33 Instead, the imperfect
passivation of h-BN covering the TMD is attributed to O2
molecule penetration between the h-BN overlayer and the
SiO2 substrate surface, as in a previous study of van der Waals
layer covering and passivating nanoparticle monolayers from
oxidant gases,34 which found an effective diffusion coefficient
for 2D transport of O2 underneath the van der Waals layer of
∼10−10 cm2/s.34 This might be due to the roughness and
dangling bonds on the SiO2 substrate surface, which would
allow some molecules, such as O2 and H2O, to move here
between the h-BN layer and SiO2 substrate surface. Therefore,
even if the covered sample is not seen to decompose, the
transport of oxygen underneath the h-BN overlayer can
degrade the PL measured after the heating cycle, and even
more so for higher temperatures, longer heating cycles, and
smaller area h-BN overlayers.
This mechanism could also help explain why covered WS2

shows the lowest postcycle PL signal after heating in forming
gas. The H2 in forming gas likely moves faster across the h-
BN/SiO2 interface than these other, larger molecules used in
the studies and apparently leads to defects in the covered
monolayer WS2. The trion peaks originate from doping level
changes caused by charge defects generated by H2 molecules.
In contrast, forming gas leads to the least macroscopic
decomposition of uncovered WS2 of the gas environments
examined.
As noted above, after the heating/cooling cycle to 773 K in

air, the peak position of PL of h-BN-covered WS2 showed a
small red shift of 12 meV, which corresponds to an increase in
the biaxial in-plane tensile strain of ∼0.12% if all due to
strain.25 Because WS2 monolayers have a larger thermal
expansion coefficient than does either Si or h-BN, an increase
in this strain during the cooling cycle is expected (with

adhesion between either WS2 and the substrate (of ∼0.21−
0.35%) or between WS2 and h-BN (∼0−0.13%), with the
range due to the uncertainty in the WS2 ML thermal expansion
coefficient).35−37 The integrated PL at room temperature
decreases after this cycle in air by ∼63%. This large amount of
decrease cannot be attributed to this strain change. Lloyd et al.
measured the integrated PL intensity change as a function of
biaxial in-plane tensile strain and found that an ∼0.12%
increase in biaxial in-plane tensile strain corresponds to a
decrease in PL integrated intensity of ∼9%.38 Thermal damage
could be important for PL quenching, including some of it
possibly being linked to the spots seen in Figure 3.
The overall PL blue shift with flowing N2 and forming gas

would indicate additional factors beyond strain, such as
changes in doping and the lattice parameters. This would be
expected with electron concentration increases39 and molec-
ular bonding to sulfur vacancies.40 This could indicate thermal
damage in both cases, the more so with forming gas, which had
the much larger PL blue shift and decrease in PL intensity.
The temperature dependence of the integrated PL intensity

and the fwhm in ambient air are fit in parts (a) and (b),
respectively, of Figure 5. The fwhm line width of the PL, due

to exciton recombination in monolayer WS2, depends on T
as41−44

T T N( ) 0σ γΓ = + + Γ (1)

The first term comes from the acoustic phonon−exciton
interaction, with the acoustic phonon coupling strength σ
typically having an order of magnitude of a few μeV/K. The
second term arises from the exciton−optical phonon
interaction, and above 100 K its contribution is much larger
than that of the first term. This second term is proportional to
the number of phonons, as given by the Bose−Einstein
distribution function:

( )
N

1

exp 1E
k TB

=
−

(2)

Here, E is the (weighted average) energy of the relevant
phonons. γ is the optical phonon coupling strength. E, γ, and
Γ0 parameters are obtained by fitting the curve for PL fwhm in
Figure 2d for heating of covered h-BN in ambient air. The
“average” phonon energy is E = 25 meV, the exciton phonon

Figure 5. (a) Integrated PL intensity and (b) fwhm of h-BN-covered
WS2 flakes versus T under ambient air. The blue spots are the
experimental data from the heating cycle run in Figure 2d. The red
solid red line in (a) is a fitted curve and in (b) the peak fwhm fit with
eq 1.
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coupling strength is γ = 67.6 meV, and the temperature-
independent broadening Γ0 = 2 meV. These parameters are
quite similar to those for MoS2 in ref 43.
The dependence of the integrated PL signal on T is usually

described by the following equation, which includes the
quenching by two nonradiative recombination centers:45−48

( ) ( )
I T

I

A B
( )

1 exp expE
k T

E
k T

0

1

B

2

B

=
+ − + −

(3)

(Supporting Information, Section S5). Parameters A and B
represent the ratio of the nonradiative recombination rate to
the radiative recombination rate for the two nonradiative
recombination centers, and E1 and E2 represent the thermal
activation energies for PL quenching for each one. For the PL
intensity in Figure 2a of covered h-BN in ambient air, the
activation energies are E1 = 51.2 meV and E2 = 229 meV, and
A = 54 and B = 10 160. Because the binding energy of free
excitons in monolayer WS2 is 320 meV,42 the larger energy E2
is thought to be the energy needed to unbind bound excitons
in WS2. The lower energy E1 represents the activation energy
of exciton diffusion to the vicinity of local nonradiative
recombination centers.48 Nonradiative recombination domi-
nates radiative decay at all studied T and does so increasingly
at higher T. In the lower T range studied, exciton diffusion is
more important than exciton unbinding, whereas in the higher
temperature range, exciton unbinding dominates.
The PL intensity during the heating of covered WS2 in N2 of

Figure 4b is also fit; similar parameters are obtained as those
for air, as seen in the Supporting Information (Figure S6). It is
not fit for covered WS2 heated in forming gas because of the
noted PL damage in that case.
A trion peak is seen in the PL during the cooling of covered

h-BN with flowing forming gas at and below 323 K (Figure
4c). The trion binding energy is very roughly estimated to be
kBT at the temperature it first appears (323 K), which is
approximately 28 meV. This corresponds well to the findings
of a previous PL study of WS2, which was conducted down to
4 K, 20−30 meV.42

■ CONCLUSIONS
CVD-grown triangular-shape high-quality monolayers of WS2
can be well stabilized at elevated temperatures by encapsula-
tion with several-layer h-BN, but to different degrees in the
presence of ambient air, flowing N2, or flowing forming gas
(95% N2, 5% H2). The best passivation occurs for h-BN-
covered samples with flowing N2, as judged by the PL intensity
after the cycle, which decreases the least with that gas.
Furthermore, no degradation of the covered WS2 flakes is seen
visually in N2 up to the highest tested examined temperature,
873 K. This might be due to “minimal” O2 and H2O molecules.
Spots are seen to form in the middle of the flakes after heating
in ambient air, but not after heating in N2. Postcycle PL is
weakest for forming gas, presumably due to the damage by the
rapid H2 diffusion between the h-BN and SiO2 substrate
surface. For forming gas only, trion PL peaks are seen, and they
are seen near the end of the cooldown cycle. Also, macroscopic
degeneration of the covered WS2 is seen in forming gas at high
temperatures. In contrast, flowing forming gas leads to the least
macroscopic degeneration of uncovered WS2 at elevated
temperature. One would expect WS2 flakes would be
passivated even better with h-BN encapsulation on the top
and bottom, and in the presence of N2.
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